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In the spirit of Lewis Richardson’s original study of the statistics of deadly conflicts,

we study the frequency and severity of terrorist attacks worldwide since 1968. We

show that these events are uniformly characterized by the phenomenon of ‘‘scale

invariance,’’ that is, the frequency scales as an inverse power of the severity,

PðxÞ / x�α. We find that this property is a robust feature of terrorism, persisting

when we control for economic development of the target country, the type of weapon

used, and even for short time scales. Further, we show that the center of the distribu-

tion oscillates slightly with a period of roughly τ≈ 13 years, that there exist signifi-

cant temporal correlations in the frequency of severe events, and that current models

of event incidence cannot account for these variations or the scale invariance property

of global terrorism. Finally, we describe a simple toy model for the generation of

these statistics and briefly discuss its implications.
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Richardson (1948) first introduced the concept of ‘‘scale invariance’’—that is,

a power-law scaling between dependent and independent variables—to the

study of conflict by examining the frequency of large and small conflicts as a func-

tion of their severity. His work demonstrated that for both wars and small-scale

homicides, the frequency of an event scales as an inverse power of the event’s

severity (in this case, the number of casualties). Richardson, and subsequent

researchers such as Cederman (2003), have found that the frequency of wars of a

size x scales as PðxÞ / x�α, where α≈ 2 and is called the scaling exponent.

Recently, similar power-law statistics have been found to characterize a wide vari-

ety of natural phenomena, including disasters such as earthquakes, floods, and
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forest fires (Bak and Tang 1989; Malamud, Morein, and Turcotte 1998; Newman

2005), social behavior or organization such as the distribution of city sizes, the

number of citations for scientific articles, the number of participants in strikes, and

the frequency of words in language (Zipf 1949; Simon 1955; Newman 2005; Biggs

2005), among others. As a reflection of their apparent ubiquity, but somewhat

pejoratively, it has even been said that such power-law statistics seem ‘‘more

normal than normal’’ (Li et al. 2005).

In this article, we extend Richardson’s program of study to the most topical kind

of conflict—terrorism. Specifically, we empirically study the distributional nature

of the frequency and severity of terrorist events worldwide since 1968. Although

terrorism as a political tool has a long history (Congleton 2002; Enders and Sandler

2006), it is only in the modern era that small groups of so-motivated individuals

have had access to extremely destructive weapons (Shubik 1997; Federal Bureau

of Investigation 1999). Access to such weapons has resulted in severe terrorist

events such as the August 7, 1998, car bombing in Nairobi, Kenya, which injured

or killed over 5,200, and the more well-known attack on September 11, 2001, in

New York City, which killed 2,749. Conventional wisdom holds that these rare but

severe events are ‘‘outliers’’; that is, they are qualitatively different from the more

common terrorist attacks that kill or injure only a few people. Although that

impression may be true from an operational standpoint, it is false from a statistical

standpoint. The frequency-severity statistics of terrorist events are scale invariant,

and consequently, there is no fundamental difference between small and large

events; both are consistent with a single underlying distribution. This fact indicates

that there is no reason to expect that major or more severe terrorist attacks should

require qualitatively different explanations than less salient forms of terrorism.

The results of our study are significant for several reasons. First, severe events

have a well-documented disproportional effect on the targeted society. Terrorists

typically seek publicity, and the media tend to devote significantly more attention

to dramatic events that cause a large number of casualties and directly affect the

target audience (Wilkinson 1997; Gartner 2004). When governments are uncertain

about the strength of their opponents, more severe terrorist attacks can help terrorist

groups signal greater resources and resolve and thereby influence a government’s

response to their actions (Overgaard 1994). Research on the consequences of ter-

rorism, such as its economic impact, likewise tends to find that more severe events

exert a much greater impact than less severe incidents (Enders and Sandler 2006,

chap. 9). For instance, Navarro and Spencer (2001) report dramatic declines in
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share prices on the New York Stock Exchange, NASDAQ, and Amex after the

devastating September 11 attacks in the United States. In contrast, although finan-

cial markets fell immediately following the July 7, 2005, bombings in London,

share prices quickly recovered the next day as it became clear that the bombings

had not been as severe as many initially had feared.1 Recent examples of this non-

linear relationship abound, although the tremendous reorganization of the national

security apparatus in the United States following the September 11, 2001, attacks is

perhaps the most notable in Western society. Second, although researchers have

made efforts to develop models that predict the incidence of terrorist attacks, with-

out also predicting the severity, these predictions provide an insufficient guide for

policy, risk analysis, and recovery management. In the absence of an accurate

understanding of the severity statistics of terrorism, a short-sighted but rational

policy would be to assume that every attack will be severe. Later, we will show that

when we adapt current models of terrorism to predict event severity, they mislead-

ingly predict a thin-tailed distribution, which would cause us to dramatically under-

estimate the future casualties and consequences of terrorist attacks. Clearly, we

need to better understand how our models can be adapted to more accurately pro-

duce the observed patterns in the frequency-severity statistics. That is, an adequate

model of terrorism should not only give us indications of where or when events are

likely to occur, but also tell us how severe they are likely to be. Toward this end,

we describe a toy model that can at least produce the correct severity distribution.

Past research on conflict has tended to focus on large-scale events like wars and

to characterize them dichotomously according to their incidence or absence rather

than according to their scale or severity. This tendency was recently highlighted by

Cederman (2003) for modeling wars and state formation and by Lacina (2006) for

civil wars. Additionally, accounting for an event’s severity can provide signifi-

cantly greater guidance to policy makers; for instance, Cioffi-Revilla (1991) accu-

rately predicted the magnitude (the base ten logarithm of total combatant fatalities)

of the Persian Gulf War in 1991, which could have helped in estimating the politi-

cal consequences of the war.

As mentioned above, research on terrorism has also tended to focus on inci-

dence, rather than severity. Recently, however, two of the authors of this study

demonstrated for the first time that the relationship between the frequency and

severity of terrorist events exhibits the surprising and robust feature of scale invar-

iance (Clauset and Young 2005), just as Richardson (1948) showed for wars. In a

subsequent study, Johnson et al. (2005) considered data for fatal attacks or clashes

in the guerilla conflicts of Colombia and Iraq, suggesting that these too exhibit

scale invariance. Additionally, they claim that the time-varying behavior of these

two distributions are trending toward a common power law with parameter α =

2.5—a value they note as being similar to the one reported by Clauset and Young

(2005) for terrorist events in economically underdeveloped nations. Johnson et al.

(2005) then adapted a dynamic equilibrium model of herding behavior on the stock

60 Journal of Conflict Resolution



market to explain the patterns they observed for these guerilla conflicts. From

this model, they conjecture that the conflicts of Iraq, Colombia, Afghanistan,

Casamance (Senegal), Indonesia, Israel, Northern Ireland, and global terrorism are

all converging to a universal distribution with exactly this value of α. We will

briefly revisit this idea in a later section. Finally, the recent work of Bogen and

Jones (2006) also considers the severity of terrorist attacks primarily via aggregate

figures to assess whether there has been an increase in the severity of terrorism over

time and to forecast mortality because of terrorism.

This article makes three main contributions. First, we make explicit the utility

of using a power-law model of the severity statistics of terrorist attacks and demon-

strate the robust empirical fact that these frequency-severity statistics are scale

invariant. Second, we demonstrate that distributional analyses of terrorism data can

shed considerable light on the subject by revealing new relationships and patterns.

And third, we show that, when adapted to predict event severity, existing models of

terrorism incidence fail to produce the observed heavy-tail in the severity statistics

of terrorism and that new models are needed to connect our existing knowledge

about what factors promote or discourage terrorism with our new results on the

severity statistics.

Power Laws: A Brief Primer

Before plunging into our analysis, and for the benefit of readers who may be

unfamiliar with the topic, we will briefly consider the topics of heavy-tailed statis-

tics and power-law distributions. What distinguishes a power-law distribution from

the more familiar normal distribution is its ‘‘heavy tail’’; that is, in a power law,

there is a nontrivial amount of weight far from the distribution’s center. This fea-

ture, in turn, implies that events orders of magnitude larger (or smaller) than the

mean are relatively common. The latter point is particularly true when compared to

a normal distribution, where essentially no weight is far from the mean. Although

there are many distributions that exhibit heavy tails, the power law is a particularly

special case, being identifiable by a straight line with slope α on doubly logarithmic

axes2, and which appears widely in physics. The power law has the particular form

in which multiplication of the argument, for example, by a factor of 2, results in a

proportional division of the frequency, for example, by a factor of 4, and the ratio

of these values is given by the ‘‘scaling parameter’’ α. Because this relationship

holds for all values of the power law, the distribution is said to ‘‘scale,’’ which

implies that there is no qualitative difference between large and small events.

Power-law distributed quantities are actually quite common, although we often

do not think of them as being that way. Consider, for instance, the populations of

the six hundred largest cities in the United States (from Census 2000). With the

average population being only xh i ¼ 165; 719, metropolises like New York City
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and Los Angeles would seem to be clear outliers relative to this value. The first clue

that this distribution is poorly explained by a truncated normal distribution is that

the sample standard deviation σ = 410,730 is significantly larger than the sample

mean. Indeed, if we model the data in this way, we would expect to see 1:8 times

fewer cities at least as large as Albuquerque, at 448,607, than we actually do.

Furthermore, because it is more than a dozen standard deviations from the mean, we

would never expect to see a city as large as New York City, with a population of

8,008,278; for a sample this size, the largest city we would expect to see is Indiana-

polis at 781,870. Figure 1 shows the actual distribution, plotted on doubly-

logarithmic axes, as its complementary cumulative distribution function (ccdf)

PðX ≥ xÞ, which is the standard way of visualizing this kind of data.3 The scaling

Figure 1

Frequency-Size Distribution of the 600 Largest U.S. Cities
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Note: The complementary cumulative distribution function (ccdf) PðX ≥ xÞ of the population x of

the six hundred largest cities in the United States, that is, those with x ≥ 50,000, based on data from

Census 2000. The solid black line shows the power-law behavior that the distribution closely follows,

with scaling exponent α = 2.36(6), while the dashed black line shows a truncated normal distribution

with the same sample mean. The value in parentheses indicates the uncertainty in our estimate of α.
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behavior of this distribution is quite clear, and a power-law model (black line) of its

shape is in strong agreement with the data. In contrast, the truncated normal model

is a terrible fit.

As a more whimsical second example, consider a world where the heights of

Americans were distributed as a power law, with approximately the same average

as the true distribution (which is convincingly normal when certain exogenous fac-

tors are controlled). In this case, we would expect nearly 60,000 individuals to be

as tall as the tallest adult male on record, at 2.72 m. Furthermore, we would expect

ridiculous facts such as 10,000 individuals being as tall as an adult male giraffe,

one individual as tall as the Empire State Building (381 m), and 180 million

diminutive individuals standing a mere 17 cm tall. In fact, this same analogy was

recently used to describe the counter-intuitive nature of the extreme inequality in

the wealth distribution in the United States (Crook 2006), whose upper tail is also

distributed according to a power law.

Although much more could be said about power laws, we hope that the curious

reader takes away a few basic facts from this diversion. First, heavy-tailed distribu-

tions do not conform to our expectations of a linear or normally distributed world.

As such, the average value of a power law is not representative of the entire distri-

bution, and events orders of magnitude larger than the mean are, in fact, relatively

common. Second, the scaling property of power laws implies that, at least statisti-

cally, there is no qualitative difference between small, medium, and extremely

large events, as they are all succinctly described by a very simple statistical rela-

tionship. Readers who would like more information about power laws should refer

to the extensive review by Newman (2005). With these ideas in hand, we can begin

our analysis of the severity statistics of terrorism.

Data Sources for Terrorist Events

Many organizations track terrorist events worldwide, but few provide their data

in a form amenable to scientific analysis. The most popular source of informa-

tion on terrorist events in the political science literature is the ITERATE data set

(Mickolus et al. 2004), which focuses exclusively on transnational terrorist events

involving actors from at least two countries. In principle, however, and from the

standpoint of frequency and severity statistics, we see no reason to restrict our

analysis to transnational events. Instead, we use the data contained in the National

Memorial Institute for the Prevention of Terrorism (MIPT; 2006) database, which

largely overlaps with the ITERATE data but also includes fully domestic terrorist

events since at least 1998. We note, however, that our analyses can easily be

applied to the portion of the ITERATE data that reports event severity, and indeed,

doing so yields evidence similar to that which we present here. Thus, without loss

of generality and except where noted, we will focus exclusively on the MIPT data
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for the remainder of this article. The MIPT database is itself the compilation of the

RAND Terrorism Chronology 1968-1997, the RAND-MIPT Terrorism Incident

database (1998-present), the Terrorism Indictment database (University of Arkan-

sas and University of Oklahoma), and DFI International’s research on terrorist

organizations.

By June 18, 2006, the MIPT database contained records for over 28,445 terrorist

events in more than 5,000 cities across 187 countries worldwide since 1968.

Although alternative definitions for terrorism exist, the MIPT database uses a rela-

tively standard one that may be summarized as any violent act by a nonstate actor

intended to create fear for political purposes. Each entry in the database is quite

narrow: it is an attack on a single target in a single location (city) on a single day.

For example, the al-Qaeda attacks in the United States on September 11, 2001,

appear as three events in the database, one for each of the following locations: New

York City, Washington D.C., and Shanksville, Pennsylvania. Each record includes

the date, target, city (if applicable), country, type of weapon used, terrorist group

responsible (if known), number of deaths (if known), number of injuries (if

known), a brief description of the attack, and the source of the information.

Of the nearly 30,000 recorded events, 10,878 of them resulted in at least one

person being injured or killed, and we restrict our analyses to these events, since

they appear to be the least susceptible to any reporting bias. Furthermore, it is a rea-

sonable assumption that the largest events, because of their severity both in terms

of casualties and political repercussions, will have the most accurate casualty esti-

mates. Finally, if there is a systemic bias in the form of a proportional over- or

underestimate in the event’s severity, it will have only a small effect on the results

of our statistical analysis and will not change the core result of scale invariance—

as with Richardson’s (1948) study of the severity of wars, simply obtaining the cor-

rect order of magnitude of an event reveals much of the basic scaling behavior.

Throughout the remainder of the article, we take the severity of an event to be

either the number of injuries, the number of deaths, or their sum (total casualties),

where the severity is always at least one. Unless otherwise noted, we focus exclu-

sively on the statistics of these values.

Frequency-Severity Distributions for Attacks since 1968

Collecting all events since 1968 as a histogram of severities, we show their com-

plementary cumulative distribution functions (ccdf’s) PðX ≥ xÞ in Figure 2. The

regular scaling in the upper tails of these distributions immediately demonstrates

that events orders of magnitude larger than the average event size are not outliers

but are instead in concordance with a global pattern in the frequency statistics of

terrorist attacks. Significantly, the scaling exists despite large structural and politi-

cal changes in the international system such as the fall of communism, variations
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in the type of weapon used, recent developments in technology, the demise of indi-

vidual terrorist organizations, and the geographic distribution of events themselves.

In subsequent sections, we will examine the robustness of the scale invariance

property to both categorical and temporal analysis.

If we make the idealization that events are independent and identically distribu-

ted (iid), we may model the distribution as a power law with some exponent α,

where the scaling behavior holds only for values at least as large as some lower-

bound xmin. Obviously, significant correlations exist between many terrorist events,

and such an idealization is made only for the purpose of doing a distributional ana-

lysis. Using the method of maximum likelihood, we estimate two parameters of

the power-law model from the data (details of our statistical methodology are dis-

cussed in the appendix). Models found in this way for the full distributions described

above are summarized in Table 1. Using the Kolmogorov-Smirnov goodness-of-fit

test, we find that these simple iid models are a surprisingly good representation of

Figure 2

Frequency-Severity Distributions for Terrorist Attacks Worldwide since 1968
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Note: The frequency-severity distributions PðX ≥ xÞ of attacks worldwide since 1968 by injuries,

deaths, and their sum. The solid line indicates the power-law scaling found by the maximum likelihood

method. Details of fits for these distributions are given in Table 1.
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the death and total severity distributions (both pKS > 0.9), although a more

marginal representation of the injuries distribution (pKS > 0.4).4

In a later section we will see that we can further decompose these distributions

into their components, each of which is strongly scale invariant but with different

scaling and limit parameters. As mentioned earlier, the power law is not the only

distribution with a heavy tail, and although testing all such alternatives is beyond

the scope of this article, we considered another common distribution, the log-normal

(see, e.g., Serfling 2002), and found in all cases that we may convincingly reject this

model (pKS < 0:05).

Evolution of Terrorism over Time

Because events in the database are annotated with their incidence date, we may

write them down as a time series and investigate the severity distribution’s beha-

vior as a function of time.5 Although we are ultimately interested in the property of

scale invariance over time, we first consider a simple, model-agnostic measure of

the distribution’s shape: the average log-severity. Sliding a window of twenty-four

months over the 38.5 years of event data, we compute the average log-severity

(deaths) of events within each window.

For highly skewed distributions, such as those we show in Figure 2, the average

log-severity measures the position on the independent axis of the distribution’s cen-

ter. The average log-severity is significantly less sensitive to variations in the

length of the upper tail, which may arise from the occasional presence of rare but

severe events, than is the average severity. The resulting time series of this measure

is shown in the upper pane of Figure 3, along with one standard deviation. Notably,

this function is largely stable over the nearly forty years of data in the MIPT data-

base, illustrating that the center of the distribution has not varied substantially over

that time.

A closer examination of the fluctuations, however, suggests the presence

of potential periodic variation. We investigate this possibility by taking the

Table 1

Summary of Distributions and Models Shown in Figure 2

Distribution N hXi σstd Xmax Ntail a Xmin pKS ≥
Injuries 7,456 12.77 94.45 5,000 259 2.46(9) 55 0.41

Deaths 9,101 4.35 31.58 2,749 547 2.38(6) 12 0.94

Total 10,878 11.80 93.46 5,213 478 2.48(7) 47 0.99

Note: A summary of the distributions shown in Figure 2, with power-law fits from the maximum likeli-

hood method. N (Ntail) depicts the number of events in the full (tail) distribution. The parenthetical value

depicts the standard error of the last digit of the estimated scaling exponent.
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autocorrelation function (ACF) of the time series, which we show in the lower-

pane. The noticeable sinusoidal shape in the ACF shows that the fluctuations do

exhibit a strong degree of periodicity on the order of τ≈ 13 years. If we vary the

size of the window, for example, windows between twelve and sixty or more

months (data not shown), the location and magnitude of the peak are, in fact, quite

stable. But these features do vary slightly if we instead either examine the total or

injury distributions or truncate the time series. As such, we conjecture that some

periodicity is a natural feature of global terrorism, although we have no explanation

for its origin. It has been suggested that the τ≈ 13 value may be related to the

Figure 3

Average Log-Severity of Events over Time, and Its Autocorrelation Function
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τ≈ 13 years. Similar results apply when we analyze total or injury severity but with slight changes to

the magnitude or location of the anomalous peak in the autocorrelation function.
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modal life expectancy of the average terrorist group. However, we caution against

such conclusions for now, since these aforementioned variations on our analysis

can shift the peak by several years.

Scale Invariance over Time

Turning now to the question of scale invariance over time, we again use a slid-

ing window of two years but now shifted forward by one year at a time. To remain

parsimonious, we make the idealization that events within each window were

drawn iid from a two-parameter power-law model. After fitting such a model to

each window’s frequency-severity distribution, we calculate its statistical signifi-

cance as a way to check the model’s plausibility for that time period. Obviously,

this assumption of no temporal correlations is quite strong, and, where appropriate,

we discuss what light our analysis sheds on its accuracy. Johnson et al. (2005) used

a similar approach to study the time-varying distributions for the conflicts in

Colombia and Iraq but did not consider the accuracy of their models’ fit or give

any measure of their statistical significance.

In Figure 4a, we show the estimated scaling parameters α for each time period.

For the first thirty years of data, the scaling parameter appears to fluctuate around

α≈ 2, which suggests that the scaling behavior was relatively stable over this per-

iod. Subsequent to 1998, when a larger number of domestic events were incorpo-

rated into the database, the scaling parameter shifts upward to α≈ 2:5 but again

shows no consistent trend in any direction. This shift, taken with the apparent stabi-

lity of the scaling behavior over time, suggests that the absence of domestic events

before 1998 may have biased those distributions toward more shallow scaling; that

is, before 1998 larger events appear to be more common.

Although many (41 percent) of these iid power-law models appear to match the

distribution of severities quite well (pKS > 0:9), nearly half (49 percent) achieve

only a middling level of statistical significance ð0:5<pKS ≤ 0:9; Figure 4b, upper).

That is, there are significant temporal correlations within the time series, or perhaps

there are strong but temporally localized deviations from the long-term structure of

the power-law distribution, which cause our simple model to yield a poor fit at

these times. Either case is unsurprising for this kind of real-world data. An interest-

ing line of future inquiry would be a close study of the tail events’ political context,

which may reveal the origin of their correlations and explain when temporally local

deviations from the long-term behavior occurred.

Furthermore, we observe that the frequency of the most severe events, that is,

events in the upper tail of the distribution, has not changed much over the past

thirty years. In Figure 4b (lower pane), we plot the reciprocal of those frequencies,

the mean interevent intervals, for each two-year period. Notably, from 1977 to

1997, the interevent interval for extreme events averaged 6:9± 3:7 days, while
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from 1998 to 2006, it averaged 5:3± 4:0 days. Although this result may appear to

contradict recent official reports that the frequency of terrorist attacks worldwide

has increased dramatically in the past few decades (United States Department of

State 2003) or that the frequency of major events has decreased, it does not.

Instead, the situation is slightly more complicated: our analysis suggests that the

changes in event frequencies have not been evenly distributed with respect to their

severity but rather that less severe attacks are now relatively more frequent, while

the frequency of major or tail-events has remained unchanged. This behavior is

directly observable as the upward movement of the lower-bound on the scaling

region in recent years, precisely when attacks overall are thought to be more fre-

quent (Figure 4b, middle pane).

Taking the above results together with those of the average log-severity time-

series (Figure 3) in the previous section, we can reasonably conclude that the domi-

nant features of the frequency-severity statistics of terrorism have not changed sub-

stantially over the past 38.5 years. That is, had some fundamental characteristic of

terrorism changed in the recent past, as we might imagine given recent political

events, the frequency-severity distribution would not display the degree of stability

we observe in these statistical experiments.

Variation in Scale Invariance by
Target-Country Industrialization

Returning to the full distributions, we now consider the impact of industrializa-

tion on the frequency-severity statistics—given that each attack is executed within

a specific country, we may ask whether there is a significant difference in the scal-

ing behaviors of events within industrialized and nonindustrialized countries.

Toward this end, we divide the events since 1968 into those that occurred within

the thirty Organisation for Economic Co-operation and Development (OECD)

nations (1,244 events, or 11 percent) and those that occurred throughout the rest of

the world (9,634 events, or 89 percent). We plot the corresponding total severity

distributions in Figure 5a, and give their summary statistics in Table 2.

Most notably, we find substantial differences in the scaling of the two distri-

butions, where industrialized-nation events scale as αOECD ¼ 2:02ð9Þ, while

nonindustrialized-nation events scale more steeply, as αnon�OECD ¼ 2:51ð7Þ. That

is, while events have been, to date, less likely to occur within the major industria-

lized nations, when they do, they tend to be more severe than in nonindustrialized

nations. Although this distinction is plausibly the result of technological differ-

ences, that is, industrialization itself makes possible more severe events, it may

also arise because industrialized nations are targeted by more severe attacks for

political reasons. For instance, the OECD events are not uniformly distributed over

the thirty OECD nations but are disproportionately located in eight states: Turkey
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(335 events), France (201), Spain (109), Germany (98), the United States of

America (93), Greece (76), Italy (73), and the United Kingdom (62). These eight

account for 84.2 percent (1,047) of all such OECD events, and 141 of those are tail

events; that is, their total severity is at least xmin ¼ 13, the estimated lower limit of

the tail region. These eight nations account for 89.2 percent of the severe events,

suggesting that industrialization alone is a weak explanation of the location of

severe attacks and that political factors must be important.

Variation in Scale Invariance by Weapon Type

As our final characterization of the frequency-severity distribution’s scale-

invariance, we consider the connection between technology, represented by the

type of weapon used in an attack, and the severity of the event. Figure 5b shows

the total severity distributions for chemical or biological weapons, explosives

(including remotely detonated devices), fire, firearms, knives, and a catchall cate-

gory, other (which also includes unconventional6 and unknown weapons). We find

that these component distributions themselves exhibit scale invariance, each with a

unique exponent α and lower limit of the power-law scaling xmin. However, for the

chemical or biological weapons and the explosives distributions, we must make a

few caveats. In the former case, the sparsity of the data reduces the statistical power

of our fit, and as discussed by Bogen and Jones (2006), the severity of the largest

such event, the 1998 sarin gas attack in Tokyo, is erroneously high. For the latter

distribution, another phenomenon must govern the shape of the lower tail, and we

Table 2

Summary of Distributions and Models Shown in Figure 5

Distribution N hXi σstd Xmax Ntail a Xmin pKS ≥
OECDa 1,244 17.65 206.28 5,012 158 2.02(9) 13 0.61

Non-OECD 9,634 11.04 66.09 5,213 438 2.51(7) 47 0.84

Chem/bio 19 274.11 1,147.48 5,012 19 1.5(2) 1 0.89

Explosives 4,869 18.93 90.61 5,213 412 2.52(7) 49 0.60

Fire 133 16.79 107.14 1,200 85 1.9(1) 2 0.99

Firearms 4,603 4.09 24.52 1,058 744 2.37(5) 5 0.92

Knives 254 2.43 7.01 107 52 2.6(2) 3 0.99

Other 1,000 9.30 158.79 5,010 189 2.17(9) 5 0.99

Note: A summary of the distributions shown in Figure 5, with power-law fits from the maximum likeli-

hood method. N (Ntail) depicts the number of events in the full (tail) distribution. The parenthetical value

depicts the standard error of the last digit of the estimated scaling exponent. As described in the text, the

statistical significance of the explosives distribution model increases to pKS ≥ 0:82 when we control for

suicide explosive attacks.

a. OECD=Organisation for Economic Co-operation and Development.
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investigate its causes below. Table 2 summarizes the distributions and their power-

law models.

By partitioning events by weapon type, we now see that the origin of the bend-

ing in the lower tail of the injury and total severity distributions (Figure 2a) are pri-

marily because of explosive attacks; that is, there is something about attacks

utilizing explosives that makes them significantly more likely to injure a moderate

or large number of people than other kinds of weapons. However, this property

fails for larger events, and the regular scaling resumes in the upper tail. In contrast,

we see no such change in the scaling behavior in the lower tail for other weap-

ons—this demonstrates that the property of scale invariance is largely independent

of the choice of weapon. Furthermore, by partitioning events according to their

weapon type, we retain high estimates of statistical significance (pKS > :9Þ.
What property of explosives attacks can explain the large displacement of the

upper tail in that distribution? Pape (2003) demonstrated through a careful analysis

of all suicide attacks between 1980 and 2001 that suicide attacks cause significantly

more deaths than nonsuicide attacks on average, being 13 and 1, respectively. Simi-

larly, for our data set, the average total severity for suicide attacks using explosives

is 41:11, while nonsuicide attacks have an average total severity of 14:41. Control-

ling for these attacks (692 events, or 12.9 percent) does not significantly change the

curvature of the lower tail in the explosives distribution. It does, however, improve

the statistical significance of our best-fit model to the upper tail (α = 2.55(9),

xmin ¼ 47, pKS ≥ :82Þ, suggesting that the severity of suicide explosives attacks

deviates strongly from the general scaling behavior and furthermore that such

attacks are not the source of the lower tail’s curvature. Conditioning on additional

factors, either singly or jointly, such as the target, tactic, or geographic region, can

reduce the curvature in the lower tail to varying degrees but can never eliminate it

(results not shown).

By analyzing the sequence of events, however, we find evidence that the curva-

ture is at least partially a temporal phenomenon. When we divide events into the

four decades beginning with 1968, 1978, 1988, and 1998, we see that the location

of the upper tail xmin increases over time, ranging from between 2 and 20 for the

first three decades to 49 for the most recent decade. Indeed, because most of the

explosives events in the database occurred recently (3,034 nonsuicide events or

72.6 percent), the scaling behavior of this decade dominates the corresponding dis-

tribution in Figure 5b. Separating the data by time, however, yields more statisti-

cally significant models, with pKS ≥ :8 for the latter three decades and

progressively more curvature in the lower tail over time. Thus, we cannot wholly

attribute the curvature to the inclusion of domestic events in more recent years,

although certainly it is largest then. Rather, its behavior may be a function of

changes in the explosives technology used in terrorist attacks over the past forty

years. The validation of this hypothesis, however, is beyond the scope of the cur-

rent study, and we leave it for future work.
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A Regression Model for the Severity of Terrorist Events

There is an extensive literature on what factors promote terrorism and make

governments more likely to become targets of terrorism. We refer to Reich (1990),

Pape (2003), and Rosendorff and Sandler (2005) for overviews of existing studies

of terrorism. Notably, however, existing studies say nothing about the frequency-

severity distribution of events, and empirical research on terrorism has tended to

focus on predicting attack incidence. In this section, we consider to what extent

models proposed to predict the incidence of terrorism data can account for the

severity of terrorism and to what extent they can reproduce the observed fre-

quency-severity distribution.

As a recent example of empirical studies on the frequency of terrorist attacks,

we use that of Li (2005). Although different studies have suggested different fea-

tures to predict variation in terrorist incidents, the Li study is both careful and gen-

erally representative of the structure of cross-country comparative studies. Li

empirically explores the impact of a large number of political and economic factors

that have been hypothesized to make transnational terrorist incidents more or less

likely, and argues that while some features of democratic institutions, such as

greater executive constraints, tend to make terrorist incidents more likely, other

features, such as democratic participation, are associated with fewer incidents.

Model (1) in Table 3 displays the coefficient estimates for Li’s original results from

a negative binomial regression of the number of transnational terrorist events, with

each country-year as the unit of observation. We refer to the original Li (2005)

article for all details on variable construction, and so forth.

Since our data are based on terrorist incidents that are not limited to transna-

tional events, we first replicate the Li model for incidents in the MIPT (2006) data

to ensure that our results are not an artifact of systematic differences between trans-

national-only and transnational-plus-domestic terrorist events. The coefficient esti-

mates for the Li model applied to the number of incidents in the MIPT data shown

as model (2) in Table 3 are, in general, reasonably similar to the results for the ori-

ginal model (1), suggesting that the model behaves similarly when applied to the

two sources of data on terrorism.

Next, we examine to what extent the right-hand-side covariates in the Li model

allow us to predict differences in the severity of terrorism. Model (3) in Table 3

displays the results for a negative binomial regression of the number of deaths

among the lethal events in the MIPT data. Comparing the size of the coefficient

estimates to their standard errors suggests that none of these coefficients are distin-

guishable from 0, with the possible exception of the estimate for Europe and the

post–cold war period. In other words, none of the factors proposed by Li seem to

be good predictors of the severity of terrorist events. Moreover, the proposed Li

model fails to generate predictions that in any way resemble the observed variation

in the number of deaths: the largest predicted number of deaths for any observation
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in the observed sample is less than 10, far below the actual observed maximum of

2,749 (i.e., the September 11, 2001, attack on the World Trade Center).

The original Li model examines the number of incidents by country-year, and

it may therefore be argued that looking only at events with casualties could

Table 3

Regression Models for Event Incidence and Severity

Variable

(1)

No. Attacks

(ITERATE)

(2)

No. Attacks

(MIPT)

(3)

Deaths by

Event

(4)

Deaths by

Country-Year

Government constraint 0.061 0.102 −0.013 0.046

(0.023) (0.030) (0.013) (0.038)

Democratic participation −0.009 −0.007 −0.001 −0.011

(0.004) (0.006) (0.003) (0.007)

Income inequality 0.001 −0.001 0.003 −0.002

(0.014) (0.016) (0.007) (0.021)

Per capita income −0.177 −0.161 0.008 −0.222

(0.11) (0.14) (0.047) (0.15)

Regime durability −0.076 −0.109 0.039 0.010

(0.047) (0.060) (0.024) (0.067)

Size 0.118 0.0494 −0.014 −0.001

(0.044) (0.054) (0.015) (0.079)

Government capability 0.275 0.189 −0.018 0.072

(0.14) (0.18) (0.061) (0.21)

Past incident 0.547 0.717 −0.009 0.789

(0.045) (0.052) (0.024) (0.081)

Post−cold war −0.578 −0.253 0.104 −0.036

(0.097) (0.11) (0.061) (0.16)

Conflict −0.170 −0.046 0.294 0.072

(0.11) (0.13) (0.13) (0.39)

Europe 0.221 −0.263 −0.133 −0.589

(0.20) (0.34) (0.075) (0.49)

Asia −0.494 −0.684 0.239 −0.542

(0.25) (0.28) (0.13) (0.36)

America −0.349 −0.681 −0.098 −1.125

(0.15) (0.23) (0.073) (0.30)

Africa −0.423 −0.462 0.022 −0.538

(0.18) (0.21) (0.12) (0.31)

Constant −0.443 0.805 1.591 2.548

(1.54) (1.89) (0.65) (2.63)

N 2,232 2,232 1,109 2,232

Log-likelihood −3,805.791 −3,300.011 −2,897.375 −2,268.129

LR −w2 1,151.842 507.427 151.709 373.293

Note: Coefficients for a negative binomial regression model on terrorist event incidence, after Li (2005),

and its ability to predict observed severity statistics; parenthetical entries give robust standard errors.
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understate the possible success of the model in identifying countries that are unli-

kely to become targets of terrorist incidents. The results for the Li model applied to

the total events for all country-years, model (4) in Table 3, however, do not lend

much support to this idea. Very few of the features emphasized by Li have coeffi-

cient estimates distinguishable from 0 by conventional significance criteria, and the

highest predicted number of deaths for any one country-year in the sample is still

less than 16. As such, this model is clearly not able to generate the upper tail of the

observed frequency-severity distribution.

A Toy Model for Scale Invariance
through Competitive Forces

Having shown that a representative model of terrorism incidence is a poor pre-

dictor of event severity, we now consider an alternative mechanism by which we

can explain the robust statistical feature of scale invariance. As it turns out, power-

law distributions can arise from a wide variety of processes (Kleiber and Kotz

2003; Mitzenmacher 2004; Newman 2005; Farmer and Geanakoplos 2006). In the

case of disasters such as earthquakes, floods, forest fires, strikes, and wars, the

model of self-organized criticality (Bak, Tang, and Wiesenfeld 1987), a physics

model for equilibrium critical phenomena7 in spatially extended systems, appears

to be the most reasonable explanation (Bak and Tang 1989; Malamud, Morein, and

Turcotte 1998; Cederman 2003; Biggs 2005), since events themselves are inher-

ently spatial. However, such models seem ill-suited for terrorism, where the sever-

ity of an event is not merely a function of the size of the explosion or fire. That is,

the number of casualties from a terrorist attack is also a function of the density of

people at the time and location of the attack and of the particular application of its

destructive power; for example, a small explosion on an airplane can be more

deadly than a large explosion on solid ground.8

In the context of guerilla conflicts, Johnson et al. (2005; 2006) have adapted a

dynamic equilibrium model of herding behavior on the stock market to produce fre-

quency-severity distributions with exponents in the range of 1:5 to 3:5, depending

on a parameter that is related to the rates of fragmentation and coalescence of the

insurgent groups; they conjecture that the value 2:5, in particular, is universal for

all asymmetric conflict, including terrorism. Given the variation in the scaling

behaviors that we measure for different aspects of terrorism (Figures 2, 4a, 5a, and

5b), this kind of universalism may be unwarranted. As an alternative explanation to

the origin of the scale invariance for terrorism, we propose and analyze a simple,

nonspatially extended toy model of a stochastic, competitive process between states

and nonstate actors (Clauset and Young 2005). The model itself is a variation of

one described by Reed and Hughes (2002) and can produce exponents that vary

depending on the choice of model parameters—a feature necessary to explain the
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different scaling behaviors for industrialization and weapon types. Central to our

model are two idealizations: that the potential severity of an event is a certain func-

tion of the amount of planning required to execute it and that the competition

between states and nonstate actors is best modeled by a selection mechanism in

which the probability that an event is actually executed is inversely related to the

amount of planning required to execute it.

Consider a nonstate actor (i.e., a terrorist) who is planning an attack. Although

the severity of the event is likely to be roughly determined before planning begins,

we make the idealization that the potential severity of the event grows with time,

up to some finite limit imposed perhaps by the choice of weapon (as suggested by

Figure 5), the choice of target, or the availability of resources. If we further assume

that the payoff rate on additional planning is proportional to the amount of time

already invested, that is, increasing the severity of a well-planned event is easier

than for a more ad hoc event, then the potential severity of the event can be

expressed as PðtÞ / e�t, where �> 0 is a constant.

However, planned events are often prevented, aborted, or executed prematurely

possibly as a result of intervention by a state. This process by which some events

are carried out while others are not can be modeled as a selection mechanism.

Assuming that the probability of a successful execution is exponentially related to

the amount of time invested in its planning, perhaps because there is a small chance

at each major step of the planning process that the actors will be incarcerated or

killed by the state or will abandon their efforts, we can relate the severity of a real

event to the planning time of a potential event by x / eλt, where λ< 0 is a con-

stant. Thus, to derive the distribution of real event severities, after the selection

mechanism has filtered out those events that never become real, we must solve the

following identity from probability theory:

Z
PðxÞ dx ¼

Z
PðtÞ dt:

Doing so yields PðxÞ / x�α, where α ¼ 1� �=λ. Again considering the competi-

tive nature of this process, it may be plausible that states and actors will, through

interactions much like the coevolution of parasites and hosts, develop roughly

equal capabilities on average but perhaps with a slight advantage toward the state

by virtue of its longevity relative to terrorist organizations, such that |�| >∼ |λ|. In

this case, we have a power law with exponent α >∼ 2, in approximate agreement

with much of our empirical data.

Although our toy model makes several unrealistic idealizations, its foundational

assumptions fit well with the modern understanding of terrorism and also with

examples of recent attacks and foiled attempts. Whereas the plans for September

11, 2001, attacks in the United States are believed to have been under way since

1996,9 subsequent attacks and attempts in the United Kingdom carried out by less
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organized groups and with less advance planning have failed to create a similar

impact. For example, the July 21, 2005, attacks on the London Underground are

now believed to have been a direct copycat effort initiated after the prior July 7

bombings. The attack was spectacularly unsuccessful: none of the four bombs’

main explosive charges actually detonated, and the only reported casualty at the

time was later found to have died from an asthma attack. Even though the suspects

initially managed to flee, all were later apprehended.

The competitive relationship of states and nonstate actors has been explored in a

variety of other contexts. Hoffman (1999) suggests that the state’s counterterrorism

efforts serve as a selective measure, capturing or killing those actors who fail to

learn from their peers’ or predecessors’ mistakes, leaving at large the most success-

ful actors to execute future attacks. Overgaard (1994), Sandler and Arce M. (2003),

Sandler and Lapan (1988), and Arce M. and Sandler (2005) give a similar view,

arguing that the actions of states and actors are highly interdependent—that actors

typically make decisions on who, where, when, or what to attack based on a careful

assessment of the likelihood and impact of success, with these factors being inti-

mately related to the decisions states make to discourage certain forms of attacks or

responses. Governments make a similar calculus, although theirs is primarily reac-

tive rather than proactive (Arce M. and Sandler 2005). Looking forward, a game

theoretic approach such as the one used by Sandler and Arce M. (2003) to produce

practical counterterrorism policy suggestions will likely be necessary to capture

this interdependence, although presumably it will be roughly similar to the selec-

tive process we describe above.

Obviously, the practical, geopolitical, and cultural factors relevant to a specific

terrorist attack are extremely complex. Although our toy model intentionally omits

them, they presumably influence the values assumed by the model parameters and

are essential for explaining the variety of scaling exponents we observe in the data,

for example, the different scaling exponents for OECD and non-OECD nations and

for attacks perpetrated using different weapons. It may be possible to incorporate

these factors by using a regression approach to instead estimate the parameter

values of our toy model rather than to directly estimate the event severity.

Discussion and Conclusions

Many of the traditional analyses of trends in terrorism are comparative, descrip-

tive, historical, or institutional, and those that are statistical rely on assumptions of

normality and thus treat rare but severe events as qualitatively different from less

severe but common events (Reich 1990; Federal Bureau of Investigation 1999;

United States Department of State 2003; Rosendorff and Sandler 2005). By demon-

strating that Richardson’s (1948) discovery of scale invariance in the frequency-

severity statistics of wars extends to the severity statistics of terrorism, we show
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that these assumptions are fundamentally false. Our estimates of the scaling beha-

vior for terrorism, however, differ substantially from that of the severity of wars; in

the latter case, the frequency-severity distribution scales quite slowly, with

αwar ¼ 1:80ð9Þ, while the distribution scales much more steeply for terrorism,

αdeaths ¼ 2:38ð6Þ, indicating that severe events are relatively less common in global

terrorism than in interstate warfare.

Taking Richardson’s program of study on the statistics of deadly human con-

flicts together with the extensive results we discuss here, our previous, preliminary

study of terrorism (Clauset and Young 2005), and the study by Johnson et al.

(2005; 2006) of insurgent conflicts, we conjecture first that scale invariance is a

generic feature of the severity distribution of all deadly human conflicts, and

second that it is the differences in the type of conflict that determine the particular

scaling behavior, that is, the values of the scaling exponent α and the lower limit of

the scaling xmin. Indeed, this variation is precisely what we observe when we con-

trol for attributes such as the degree of economic development and the type of

weapon used in the attack. In honor of Richardson and his pioneering interest in

the statistics of deadly conflict, we call our conjecture Richardson’s Law. A signifi-

cant open question for future work remains to determine how and why the distin-

guishing attributes of a conflict, such as the degree of asymmetry, the length of the

campaign, and the political agenda, and so forth, affect the observed scaling

behavior.

With regard to counterterrorism policy, the results we describe here have sev-

eral important implications. First, the robustness of the scale invariant relationship

between the frequency and severity of attacks demonstrates the fact that severe

events are not fundamentally different from less severe ones. As such, policies for

risk analysis and contingency planning should reflect this empirical fact. Second,

although severe events do occur with much greater frequency than we would

expect from our traditional thin-tailed models of event severity, their incidence has

also been surprisingly stable over the past thirty years (Figure 4b, lower pane).

This point suggests that from an operational standpoint and with respect to their

frequency and severity, there is nothing fundamentally new about recent terrorist

activities worldwide. Third, limiting access to certain kinds of weapons and targets

is clearly important, with this being particularly true for those that are inherently

more likely to produce a severe event, such as high explosives or targets like air-

planes and other mass transit systems. But severe events themselves are not only

associated with one or a few weapon types (or targets). Restricting access to some

weapons and targets will likely induce the substitution of less easily restricted ones

(Enders and Sandler 2006)—a contingency for which we should plan. Fourth, the

trend we identify for explosives, that is, that such attacks have produced progres-

sively more casualties over time, is particularly distressing given the sheer number

of explosives attacks in the recent past. Both their severity and their popularity

Clauset et al. / Frequency of Severe Terrorist Events 79



suggest that current international regulation of explosives technology is failing to

keep these weapons out of the hands of terrorists and that current diplomacy is fail-

ing to keep terrorists from resorting to their use. And finally, although it may be

tempting to draw an analogy between terrorism and natural disasters, many of

which also follow power-law statistics, we caution against such an interpretation.

Rather, a clear understanding of the political and socioeconomic factors that

encourage terrorist activities and an appropriate set of policies that directly target

these factors may fundamentally change the frequency-severity statistics in the

future and break the statistical robustness of the patterns we have observed to date.

In closing, the discovery that the frequency of severe terrorist attacks follows a

robust empirical law opens many new questions and points to important gaps in

our current understanding of both the causes and consequences of terrorism.

Although we have begun to address a few of these, such as showing that the sever-

ity of suicide attacks using explosives does not follow the same frequency-severity

statistics as other forms of terrorism, many more remain. We hope to see the com-

munity of conflict researchers making greater use of these new ideas in future

research on terrorism.

Appendix

Statistical Methodology, and the

Use of Power Laws in Empirical Studies

Because the use of power laws and other heavy-tailed distributions in the social

sciences is a relatively new phenomenon, the statistical tools and their relevant

characteristics may not be familiar to some readers. This appendix thus serves to

both explain our statistical methodology and to give the interested reader a brief

tutorial on the subject. We hope that this material illuminates a few of the subtleties

involved in using power laws in real-world situations. Readers interested in still

more information should additionally refer to Newman (2005) and Goldstein, Mor-

ris, and Yen (2004).

To begin, we note that there are two distinct kinds of power laws, a real-valued

or continuous kind and a discrete kind. Although both forms have many character-

istics in common, the numerical methods one employs in empirical studies can be

quite different, depending on whether the data are best treated as continuous or dis-

crete. Examples of the former might be voltages on power lines, the intensity of

solar flares, or the magnitude of earthquakes. In cases where discrete data takes

values that are quite large, they can often be safely treated as if they were continu-

ous variables, such as for the population of U.S. cities, book sales in the United

States, or the net worth of Americans. In the social sciences, however, data more

frequently assume integer values where the maximum value is only a few orders of
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magnitude larger than the minimum; that is, the tail is heavy but rather short.

Examples of this kind of data might be the number of connections per person in a

social network, casualty statistics for terrorist attacks, and word frequencies in a

text. If such data are treated as a continuous variable, estimates of the scaling beha-

vior or other statistical analyses can be significantly biased.

Instead, these heavy but relatively short tails should be modeled explicitly as a

discrete power law,

PðxÞ ¼ x�α=ζðαÞ

with x assuming only integer values greater than zero, and ζðαÞ being the Riemann

zeta function, the normalization constant. In what follows, we will first consider

the necessity of generating a random deviate with a power-law distribution and

then consider methods for estimating power-law parameters from data itself. Both

sections describe the statistical methods employed in this study, and provide a brief

comparison with alternative methods.

Generating Power-Law Distributed Data

Statistical modeling often necessitates the generation of random deviates with a

specified distribution, for example, in simple null models or statistical hypothesis

tests. Newman (2005) gives a simple analytic formula, derived using the transfor-

mation method in Press et al. (1992), for converting a uniform deviate into a

continuous power-law deviate:

x ¼ xminð1� rÞ�1=ðα�1Þ

where x is distributed as a real number over the interval ½xmin;∞Þ, and r is a uni-

form deviate. Although it may be tempting to simply take the integer portion of

each deviate x to obtain a discrete power law, the resulting distribution will actu-

ally differ quite strongly from what is desired: such a procedure shifts a significant

amount of probability mass from smaller to larger values, relative to the corre-

sponding theoretical discrete power-law distributed deviate.

A more satisfying approach is to use a deviate generator specifically designed

for a discrete power law. Because the discrete form does not admit a closed-form

analytical solution via the transformation method like the continuous form, the gen-

erator must instead take an algorithmic approach to convert uniform deviates via

the inverse cumulative density function of the discrete power law. Such an

approach is a standard practice, and fast algorithms exist for doing so (Press et al.

1992). To illustrate the differences between these two power-law deviate genera-

tors, we show in Figure 6a that the latter approach produces distributions that are

significantly closer to the desired theoretical one than does the former method, and

it is the latter that we use for our statistical studies in the main text.
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Estimating Scaling Parameters from Data

Since Richardson (1948) first considered the scale invariance in the frequency

and severity of wars, statistical methods for characterizing power laws have

advanced significantly. The signature feature of a tail distribution that decays as a

power law is a straight line with slope α on doubly logarithmic axes. As such, a

popular method of measuring the scaling exponent α has been by a least-squares

regression on log-transformed data, that is, one takes the log of both the dependent

and independent variables, or one could bin the data into decades, and then mea-

sures the slope using a least-squares linear fit. Unfortunately, this procedure yields

a biased estimate for the scaling exponent (Goldstein, Morris, and Yen 2004). For

continuous power-law data, Newman (2005) gives an unbiased estimator based on

the method of maximum likelihood; however, it too yields a biased estimate when

applied to discrete data such as ours. Goldstein, Morris, and Yen (2004) studied the

bias of some estimators for power-law distributed data, and, also using the method

of maximum likelihood, give a transcendental equation whose solution is an

unbiased estimator for discrete data. In our main study, we use a generalization of

this equation as our discrete maximum likelihood estimator.

To give the reader a sense of the performance of these methods, we show in Fig-

ure 6b the results of applying them to simulated data derived from the discrete gen-

erator described above. Quite clearly, the discrete maximum likelihood estimator

yields highly accurate results, with the other techniques either over- or underesti-

mating the true scaling parameter, sometimes dramatically so. Johnson et al.

(2006) have also studied the accuracy of these estimators but apparently only for

data derived from the continuous deviate generator described above.

The discrete maximum likelihood estimator of Goldstein, Morris, and Yen

(2004) assumes that the tail encompasses the entire distribution. A generalization

of their formula to distributions where the tail begins at some minimum value

xmin ≥ 1 follows, and the value of αML that satisfies this equation is the discrete

maximum likelihood estimator:

ζ0ðα; xminÞ
ζðα; xminÞ

¼ � 1

n

Xn
i¼1

log xI ;

where the xi are the data in the tail, n is the number of such observations, and

ζðα; xminÞ is the incomplete Riemann zeta function. If desired, the latter can be

rewritten as ζðαÞ � Hα
xmin

, being the difference between a zeta function and the xminth

harmonic number of order α. When xmin ¼ 1, the left-hand side reduces to ζ0ðαÞ=ζðαÞ,
the values of which can be calculated using most standard mathematical software.

Alternatively, one can numerically maximize the log-likelihood function itself,

Lðα | xÞ ¼ �n logζðα; xminÞ � α
Xn
i¼1

logxi;
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which may be significantly more convenient than dealing with the derivative of the

incomplete zeta function. This approach is what was used in both the present study

and in the preliminary Clauset and Young (2005) study of terrorism.

These equations assume that the range of the scaling behavior, that is, the lower

bound xmin, is known. In real-world situations, this value is often estimated

visually, and a conservative estimate of such can be sufficient when the data span a

half-dozen or so orders of magnitude. However, the data for many social or com-

plex systems only span a few orders of magnitude at most, and an underpopulated

tail would provide our tools with little statistical power. Thus, we use a numerical

method for selecting the xmin that yields the best power-law model for the data.

Specifically, for each xmin over some reasonable range, we first estimate the scaling

parameter αML over the data x ≥ xmin and then compute the Kolmogorov-Smirnov

(KS) goodness-of-fit statistic between the data being fit and a theoretical power-

law distribution with parameters αML and xmin. We then select the xmin that yields

the best such fit to our data. For simulated data with similar characteristics to the

MIPT (2006) data, we find that this method correctly estimates both the lower

bound on the scaling and the scaling exponent. Mathematically, we take

xmin ¼ min
y

max
x

|Fðx;αML; yÞ � F̂ðx; yÞ|
h i

;

where Fðx; y;αMLÞ is the theoretical cumulative distribution function (cdf) for a

power law with parameters αML and xmin ¼ y, and F̂ðx; yÞ is the empirical distribu-

tion function (edf) over the data points with value at least y. In cases where two

values of y yield roughly equally good fits to the data, we report the one with

greater statistical significance.

Once these parameters have been estimated, we first calculate the standard error

in α via bootstrap resampling. The errors reported in Tables 1 and 2, for instance,

are derived in this manner. Finally, we calculate the statistical significance of this

fit by a Monte Carlo simulation of n data points drawn a large number of times

(e.g., at least 1,000 draws) from Fðx;αML; xminÞ, where αML and xmin have been

estimated as above under the one-sided KS test. Tabulating the results of the simu-

lation yields an appropriate table of p-values for the fit, by which the relative rank

of the observed KS statistic can be interpreted in the standard way.

As mentioned in the text, there are many heavy-tailed distributions, for example,

the q-exponential e�αxq , the stretched exponential e�αx
β
, the log-normal, and even a

different two-parameter power law (cþ xÞ�α. For data that span only a few orders

of magnitude, the behavior of these functions can be statistically indistinguishable;

that is, it can be hard to show that data generated from an alternative distribution

would not yield just as good a fit to the power-law model. As such, we cannot rule

out all Type II statistical errors for our power- law models. On the other hand, we

note that for the distributions described in ‘‘Frequency-Severity Distributions for

Attacks since 1968,’’ the statistical power test versus a log-normal model indicates

84 Journal of Conflict Resolution



that the power law better represents the empirical data. In some sense, the particu-

lar kind of asymptotic scaling in the data is less significant than the robustness of

the heavy tail under a variety of forms of analysis. Simply the fact that the patterns

in the real-world severity data deviate so strongly from our expectations via tradi-

tional models of terrorism illustrates that there is much left to understand about this

phenomenon, and our models need to be extended to account for the robust empiri-

cal patterns we observe in our study.

Notes

1. See figures for the Financial Times Stock Exchange 100 index of the 100 largest companies listed

on the London Stock Exchange at http://www.econstats.com/eqty/eq_d_mi_5.htm.

2. A straight line on doubly logarithmic axes is a necessary but not sufficient condition for a distribu-

tion to be a power law; for example, when we have only a small number of observations from an expo-

nentially distributed variable, it can appear roughly straight on doubly logarithmic axes.

3. The ccdf is preferable to the probability distribution function (pdf), since the latter is significantly

noisier in the upper tail, exactly where subtle variations in behavior can be concealed. If a distribution

scales, it will continue to do so on the ccdf.

4. The Kolmogorov-Smirnov test evaluates whether observed data seem a plausible random sample

from a given probability distribution by comparing the maximum difference between the observed and

the expected cumulative distributions.

5. In 1998, the management of the database was transferred from the RAND Corporation to the

National Memorial Institute for the Prevention of Terrorism (MIPT), which resulted in several observa-

ble differences in the database records. For instance, although some purely domestic events appear prior

to 1998, such as the 1995 Oklahoma City bombing, domestic events make up a significant fraction of the

events entered subsequent to 1998, suggesting that the true number of events for some period directly

prior to 1998 is greater than we observe in the database. Although this effect could create problems for

analyses that count incidents in a simple way, it does not affect the scale invariant shape of the fre-

quency-severity distribution, primarily, we believe, because the large events that comprise the tail of the

distribution were the least susceptible to any underreporting bias. We shall explore this point more in the

next section.

6. The attacks of September 11, 2001, are considered unconventional.

7. Critical phenomena characterize a phase transition such as the evaporation of water, while an equi-

librium critical phenomenon is one in which the critical state is a global attractor of system dynamics.

8. A trivial spatial model for the frequency-severity scale invariance would be a tight connection

with size of the targeted city and the number of casualties. That is, as we saw earlier, large city popula-

tions are distributed as a power law, and we might suppose that an event’s severity is proportional to the

size of the target city. If target cities are chosen roughly uniformly at random, an obviously unrealistic

idealization, then a power law in the frequency-severity statistics follows naturally. Tabulating popula-

tion estimates for cities in our database from publicly available census data, we find that the correlation

between an event’s severity and the target city population is very weak, r = 0.2(2), for deaths and

r ¼ 0:2ð1Þ for total severity, where the number in parentheses is the standard error from a bootstrap

resampling of the correlation calculation.

9. On the planning for the September 11, 2001, attacks, see the summary of a documentary aired by

Al Jazeera at http://archives.cnn.com/2002/WORLD/meast/09/12/ alqaeda.911.claim/.
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